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Executive Summary

This report discusses one method for calculating reliability growth projection for
discrete systems. This method is simple enough to be applied by non-experts yet has
significant advantages relative to the methods designed for continuous systems and
applied to discrete systems. We summarize the assumptions and arguments that lead
to the method, but do not delve into alternative assumptions that may be equally valid.
We also compare and contrast this model with a well-known model for continuous
systems.
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1 Introduction

Reliability is defined as “the probability that an item will perform its intended function
for a specified period of time...” (DoD 2011). As failure modes are discovered and
corrected, the reliability can improve. This is called reliability growth: “the positive
improvement in a reliability parameter over a period of time due to implementation
of corrective actions to system design, operation or maintenance procedures, or the
associated manufacturing process” (DoD 2011). If there is an active campaign to
discover and correct failure modes, then it is possible to forecast reliability growth.
This is called reliability growth projection: “an assessment of reliability that can be
anticipated at some future point in the development program”(DoD 2011).

The reliability of systems is of great interest to manufacturers, users, and acquisition
professionals. Since the true reliability is unknown, it is necessary to make an estimate
of the reliability, that is, the best estimate of reliability at one point in time. This
estimate typically consists of a point estimate and an associated confidence interval.
The point estimate is equivalent to a single point on the reliability growth curve.
Reliability estimates are usually made based on the results of one recent test event.
Such tests are typically designed so that there are sufficient data to make a statistically
significant reliability estimate (i.e., so that the associated confidence interval is not
too large), although we note there is a tension with cost, since some tests can be
expensive. For simplicity, the tests are typically designed with the assumption that
the configuration of the item under test does not change during the test event.

If the system configuration changes during the test (for example, a fix is imple-
mented), then the naive reliability estimate made from all test data will not properly
reflect either configuration. In addition, the reliability estimates based on each portion
of the test separately may not have the desired level of statistical significance. In cases
such as these, reliability projection models can be used to make the best estimate of
the system reliability at the end of the test.

Two components are key to reliability growth projection. The first is that “credit
should be given” for fixed failure modes. In other words, if a failure mode is fixed
after a test, the true reliability is greater than the naive estimate from the test, since
a failure mode that appeared in that test has been fixed. The second is that the
failure probabilities for the various failure modes in the system have a probability
distribution ranging from very common to very rare. The failure modes that appear
during the test are likely to be the most common (highest probability) failure modes,
and there are likely to be some number of rarer failure modes that are not observed in
the test. As common failure modes are fixed and additional tests are made, these rare
failure modes may be observed, but many are likely to remain unobserved.

Reliability is usually measured against a continuous variable, such as time (e.g.,
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mean time between failure [MTBF]). But for some systems, here called “one-shot”
systems, reliability is measured against a discrete variable. Typical examples of
one-shot systems are rockets, missiles, and torpedoes, where testing is done one firing
at a time, and the length of time between shots is irrelevant.

This document discusses one implementation of discrete reliability growth projec-
tion and illustrates its use with examples.



2 Hall’s Model

A recent Ph.D. thesis summarizes the history of the field of reliability growth and
gives methodologies for specific aspects of discrete reliability growth (Hall 2008). For
people new to the field, the first few chapters of this thesis are a valuable introduction
to, and summary of, prior work. The later chapters are papers on reliability growth
that were written for (self-contained) publication.

Of particular interest is Chapter 4, which describes a model for discrete reliability
growth projection, published as Hall & Mosleh (2008). For continuous systems, relia-
bility growth projection is a well-developed field and the models are well understood.
There has been little work to date in discrete (one-shot) systems at the failure-mode
level, however, and Hall’s thesis appears to be a valuable contribution to the field.

The model assumes that a series of trials are undertaken where the outcome of each
trial is either success or failure. Failures can occur for many reasons; these reasons
are referred to as failure modes. Each failure mode has an underlying probability of
appearance that is unknown. Failure modes are assumed to occur independently of
each other. By construction, corrective actions (fixes) are not made in the middle of
the series of trials—they are delayed until the end of the current test phase. Thus,
the reliability of the system is constant during each test phase, and the fixes applied
between test phases will cause the reliability to increase for each successive phase.

The data required to perform reliability projection are T', the total number of trials;
N;, the number of failures in the ith failure mode; and d;, the fix effectiveness factor
(FEF) for the ith failure mode. In practice, the FEFs are estimated (d), usually
based on engineering judgement.

The following discussion summarizes the model developed in Chapter 4 of Hall
(2008). We use the same notation and reproduce equations 12-30 from that chapter,
although in a slightly different order.

The true failure probabilities (p;) for each failure mode are unknown, but we can
estimate the probability for each failure mode as:

N;

5, = 1 2.1
bi= 7 (2.1)

The reliability point estimate (7) at the end of the phase (before fixes) is simply
the product of one minus these probabilities. If the probabilities are small then we
can ignore second-order effects and approximate this as one minus the sum of the
probabilities:

=Tl -pym1-Yn=1-2N (2.2)
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One of the difficulties with equation (2.2) is that it does not take into account the
failure modes that exist but have not been observed in testing. For one-shot systems
where testing is expensive, the number of trials is kept to a minimum, and rare failure
modes are not likely to be observed. As a workaround for this, Hall’s model requires
that the user estimate k, the total number of failure modes inherent in the system.
The true system reliability growth is therefore:

r(M)=T[0—-0—d)-pl- [T @ -py). (2.3)

i€obs j€Eobs’

where obs is the set of all observed failure modes and obs’ is the set of all unobserved
failure modes. Note that for each observed mode where the FEF is 100% (d; = 1),
that mode contributes no unreliability. If all modes are observed and all FEFs are
100%, then the system reliability is 100%. Alternatively, if the FEFs are all zero
(uncorrected) and all modes are observed, then the system reliability takes the same
form as equation 2.2, the point reliability estimate.

Of course, the true failure probabilities (p;) are unknown, and our estimates (p;)
are only nonzero for observed failure modes. We must do something different for the
unobserved modes. Hall used a shrinkage factor estimator given by:

k
. . 1 R
piEe'pH‘(l_e)'Ezpia (2.4)

i=1

where 6 is the (unknown) shrinkage factor, with 0 < @ < 1. Shrinkage is one method
to transfer some of the measured unreliability from the observed modes to unobserved
modes. There are alternate methods that should also work. Note that although Hall
wrote the sum over the total number of failure modes (k), the sum effectively only
runs over the observed failure modes since p; = 0 for all unobserved modes.

Hall assumes that the true failure probabilities come from a beta distribution® that
can be parametrized as:

['(n)

o Tw—a) 0P 22

fps) =

where n and z are the beta shape parameters, and I' is the Euler gamma function.
The parameters of the beta distribution can be estimated for our case using a moment-
estimation technique (Martz & Waller 1991). Other methods could be used for this
estimation, including maximum likelihood or Bayesian methods. The first and second
sample moments are:

IThe beta distribution is a family of continuous probability density functions whose shape is determined
by two parameters. This is a reasonable—but not unique—choice for the underlying distribution of the true
failure probabilities.
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(2.6)

’B|
[l
?vl —

§[\’)

(2.7)

wl»—k

The estimates for the beta shape parameters (for a given value of k) are then:

2

v ﬁ’u - mu
_ 2.8
= e T — (1= /T) 7 (28)
T = N+ Pu. (2.9)

The optimal shrinkage factor can be chosen by minimizing the expected sum of
squared error between the estimated and true failure probabilities:

k

> (i —p) ] =0. (2.10)

=1

do

Hall reduces this to an expression that only depends on k& and the mean and
variance of the p;, rather than on the p; themselves. This reduces the number of
unknowns from k + 1 to three. For the beta distribution (equation 2.5) the mean is

x/n and the variance is 52'.(81?1)). Thus, the shrinkage factor can be estimated (for a
given value of k) as:

o 1

b, = (2.11)

(/T) (1 = 1/k) + 1

Combining equations leads to a moment-based shrinkage factor estimate of p; for
finite k given by:

. . /N
Pri = O - Di + (1 — 6) (ﬁ) : (2.12)

where N = ). N; is the total number of failures observed in the 7" trials.
This leads to a reliability growth projection estimate of:

A =T [1-a-ai] - [1-a-6- ()] T ew

i€obs
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where m is the number of observed failure modes and d estimates d; (either based on
a series of tests or by engineering judgment).

Since k is unknown, we look at the limiting behavior in complex systems where
the number of failure modes approaches infinity. In that case the reliablity growth
projection becomes

v

Foo(T) = lim 7(T) = [ [1 (1—d) .p“‘oo,i] . exp {—(1 0 (g)} . (2.14)

k—o0 i
i€obs

where

Z:il ﬁi B 221 1512

Noo = lim 7y, = =57~ mo ’ (2.15)
k—00 Yo p; — > i (pi/T)
o T g 5
900 - d ~ooi — QOO . AZ.' 2.16
T an Peo, b ( )

We will use this later when discussing the sensitivity of reliability growth projection
estimates to k.



3 Examples

3.1 Example 1

In Chapter 4 of his thesis, Hall (2008) provides an example of discrete reliability
growth projection that we will repeat here. He notes that it comes from an unspecified
air-to-ground missile program, but the origin is not important. The data are as follows.
There were T' = 27 trials resulting in 11 failures that were ascribed to m = 7 different
failure modes. The distribution of failures among the modes is given in Table 3.1,
along with the estimated FEF for the corrective actions taken after the testing.

Table 3.1: Input Data (Failure Counts and FEF Estimates) for
Example 1 (Hall 2008)

Mode | Failures | FEF
&;
0.95
0.70
0.90
0.90
0.95
0.70
0.80

3| | Y = W DN =
r—t[\')..p»—l»—t»—t»—t?

Using equations 2.1 and 2.2 we can calculate the failure mode probabilities for
each mode and the reliability point estimate. For the unobserved modes, p; = 0, and
they do not contribute to the measured unreliability of the system. Following Hall we
choose the total number of failure modes to be £ = 50. This allows us to calulate the
moments, shape parameters, and shrinkage factor that lead to the best estimate for
the probabilities, ]5;“ Some of these quantities are summarized in Table 3.2.

Pu = 0.008148  m? = 0.0006859. (3.1)
iy = 23.3084  Fp = 0.1899. (3.2)
0, = 0.5417. (3.3)

From these we can now calculate the best estimate of the reliability growth
projection:
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Table 3.2: Input Data and Calculated Intermediate Quantities for

Example 1
Mode | Failures | Meas. Prob. | Est. Prob. | FEF | Mode Reliability
N; Di P df | 1= (1—d)pra
1 1 0.0370 0.0238 0.95 0.9988
2 1 0.0370 0.0238 0.70 0.9929
3 1 0.0370 0.0238 0.90 0.9976
4 1 0.0370 0.0238 0.90 0.9976
5 4 0.1481 0.0840 0.95 0.9958
6 2 0.0741 0.0439 0.70 0.9868
7 1 0.0370 0.0238 0.80 0.9952
?k(T) = [0.9653] - [0.9963]** = [0.9653] - [0.8514] = 0.8218. (3.4)

As expected, this projection (which includes fixes) is significantly higher than the
naive reliability point estimate (which does not contain fixes) of 16/27 = 0.5926.

3.2 Example 2

Here, we provide an example of how the reliability growth projection can be used
to reduce statistical uncertainty by combining trials that otherwise could not be
combined. In this case we have an unspecified missile system where a testing phase
was sized to obtain a specific statistical uncertainty in the reliability. However, during
the testing a significant failure mode was discovered and diagnosed, and a fix was
implemented in the middle of the test. Since the configuration of the device under
test has changed, it is no longer legitimate to combine all the trials and calculate the
reliability naively based on the full set of trials. Instead, each portion of the test must
be treated separately, which will increase the uncertainty on the reliability for each
portion to an unsatisfactory level.

Part A consisted of T" = 11 trials with two failure modes discovered, one of which
was fixed (Table 3.3). Again, we assume k = 50 total failure modes.

Table 3.3: Input Data and Calculated Intermediate Quantities for
Example 2, Part A

Mode | Failures | Meas. Prob. | Est. Prob. | FEF | Mode Reliability
N; i Dhi di | 1—(1—d})pr;
1 2 0.1818 0.08024 | 1.00 1.0000
1 0.0909 0.04169 0 0.9583
Dy = 0.005454 m2 = 0.0008264. (3.5)
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i, = 15.2471 ¥ = 0.08316. (3.6)
0, = 0.4240. (3.7)
7 (T) = [0.9583] - [0.9969]*® = 0.8240  part A only. (3.8)

Part B consisted of T' = 13 trials with two failure modes discovered, neither of
which was fixed (Table 3.4). We still assume k& = 50 total failure modes.

Table 3.4: Input Data and Calculated Intermediate Quantities for
Example 2, Part B

Mode | Failures | Meas. Prob. | Est. Prob. | FEF | Mode Reliability
N; Pi Dh,i d; 1 — (1 —d;)pr;
1 1 0.0769 0.03478 0 0.9652
2 0.1538 0.06686 0 0.9331
Py = 0.004615  m?2 = 0.0005917. (3.9)
e = 18.5375 i), = 0.08555. (3.10)
0r = 0.4171. (3.11)
7(T) = [0.9007] - [0.9973]*® = 0.7914  part B only. (3.12)

For part A, the reliability point estimate is r = 8/11 = 0.7273. The associated
confidence interval can be calculated using standard binomial statistics.? For part
A the 80% confidence interval is [0.4892,0.8952]. For part B the point estimate
is r = 10/13 = 0.7692 with an 80% confidence interval of [0.5557,0.9120]. The
reliability growth projections from each of part A and part B are larger than these
naive point estimates. To combine the two reliability growth projections into a single
projection with an associated confidence interval, one can perform the following thought
experiment. If part A were performed with the failure mode fix in place, we would
expect 9.06 successful trials instead of 8. We could then combine parts A and B, giving
us an overall reliability point estimate of r = (9.06+10)/(11+13) = 19.06/24 = 0.7942
with an 80% confidence interval (determined using standard binomial statistics) of
[0.6503,0.8969]. This statistical uncertainty is significantly smaller than the uncertainty
associated with either reliability growth projection individually.

2We use the MATLAB function binofit, which uses the Clopper-Pearson method.
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3.3 Sensitivity to k

For the examples above we chose to set the total number of failure modes to k£ = 50.
This was an arbitrary choice based on the fact that there were only a small number of
failure modes observed, yet both examples were of complicated systems where there
could potentially be a large number of failure modes. It is reasonable to ask how
sensitive the reliability growth projection is to our choice of k. For example 1 we find
that once k is substantially larger than m (the number of observed failure modes),® the
reliability growth projection is fairly insensitive to the actual value of k (see Table 3.5
and Figure 3.1 for details). The difference between k = 100 and k = oo is only 0.4%
and between k£ = 50 and k& = oo is only 0.8%. Example 2 shows the same behavior.

Table 3.5: Sensitivity of the Reliability Growth Projection to £ for

Example 1
k| ()
7 10.9348
15| 0.8413
30 | 0.8260
50 | 0.8218
100 | 0.8185
1000 | 0.8158
10000 | 0.8155
oo | 0.8155

3.4 MATLAB Code

We have written a simple MATLAB (The MathWorks, Inc. 2013) script that calculates
the reliability growth projection for a fixed set of data from a single test series. All
one needs to do is change m, k, T, Ni, and di and run the script. The result, rk, is
given by equation 2.13. The code is on the CD accompanying this document.

% Reliability growth projection based on Hall’s thesis, Chapter 4

h

% Numbers for Example 1

m=7; % Number of observed failure modes

k = 50; % Total number of failure modes

T = 27; Y% Number of trials

Ni=1[1111421]; 7% Number of failures per mode

di = [0.95 0.70 0.90 0.90 0.95 0.70 0.80]; % Estimated FEF per mode
b

3Hall suggests k > 5m.

10
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Figure 3.1: The Reliability Growth Projection for Example 1 as a
Function of the Total Number of Failure Modes (k). The value for
k = oo is plotted as the blue horizontal line.

N = sum(Ni); % Total number of failures

pi = Ni/T; % MLE of probability of failure per mode
pu = (1/k)*sum(pi);

mu2 = (1/k)*sum(pi.*pi);

nk = (pu—mu2) / (mu2 - pu/T - (1-1/T)*pu~2);

xk = nkx*pu;

thetak = 1/( (nk/T)*(1-1/k) + 1);

pki = thetak*pi + (1-thetak)*(N/(k*T));

rki = 1 - (1-di).*pki;

rl = prod(rki);
r2 = (1 - (1-thetak)*(N/(k*T))) " (k-m);
rk = ri*r2;

fprintf (’Reliability growth projection is %f\n’, rk);

3.5 Excel Code

We have put the same set of equations into a simple Excel (Microsoft Corporation
2013) spreadsheet. All one needs to do is change the m, k, and T values in A1, A2,
and A3, then press “REFORMAT.” This will create m lines for the N; and d;, starting
at B6 and C6. The results are automatically calculated. The spreadsheet is on the
CD accompanying this document.

11






4 Comparing and Contrasting Hall Discrete and
ACPM Continuous Models

Section 2 develops the mathematical foundation of the Hall discrete model (HDM).
The model’s premise is that test data are binomially distributed and are from a finite
number of discrete pass/fail trials. It is not clear, however, if the model remains valid
if the number of trials increases arbitrarily (i.e., the test variable becomes continuous
rather than discrete). More generally, what are the factors that determine the HDM’s
scope of applicability?

In the following, this issue is explored by comparing and contrasting the HDM
with a continuous model, the AMSAA-Crow Projection Model (ACPM). For the two
models, Table 4.1 lists fundamental features. Each model addresses two issues for
reliability projection—accounting for unsurfaced failure modes and representing the
statistical distribution of failure rates.

Table 4.1: Fundamental Features of the HDM Discrete and ACPM
Continuous Models

Factor HDM ACPM
Test Type Discrete Continuous
Corrective Action End of Test End of Test
Statistical Mode Binomial Poisson
Unsurfaced Failure Modes Shrinkage Factor Fit to Data
Failure Likelihood [ distribution Power Law
Number of Trials; Length of Test;
Test Inputs Number of Failures; Number of Failures;
Fix Effectiveness Factor | Time of First Occurrence;
Fix Effectiveness Factor
Output Reliability Mean Time Between Failure

The models’ outputs are expressed differently, but can be inter-converted by (1)
matching test variables and (2) translating between the HDM discrete probability of
success per trial to the (quasi) equivalent ACPM mean time between failure (MTBF).
The independent variables are matched by assigning a given length of time ¢ (or
other continuous measure of test duration) to each HDM trial. For n trials, the
equivalent continuous test is n X t hours. The probability of success for a single trial
p is translated into MTBF by compounding p in n consecutive trials. The result is
equivalent to the probability of zero failures for the continuous test of length n x ¢.
The inter-conversion is completed by using the probability of zero failures to calculate
MTBF. Assuming the Poisson distribution for failures in the continuous case, the
whole process is expressed by the formula MTBF = —t/In(p).

13
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Table 4.2 summarizes features of the models’ algorithms. HDM is deterministic
and has no explicit features for testing the statistical validity of its results. However, it
is amenable to sensitivity analyses using variations of its inputs. ACPM is inherently
statistical and provides explicit tests for goodness of fit to the data, but the statistical
power of the tests depends on the quantity of available data. Also, ACPM includes the
time of first occurrence for each surfaced failure mode. HDM does not use information
on where in a sequence of trials the failures occur. With respect to fix effectiveness
factors, HDM uses the specific value for each failure mode while ACPM averages the
input values prior to use in its algorithm.

Table 4.2: Algorithmic Aspects of HDM and ACPM

Algorithm Factor HDM ACPM

Treatment of Uncertainty Deterministic Statistical Fit to Data
Goodness of Fit Testing No Chi Square and Cramer-von Mises
Time of Failure Occurrence Not Included Included

Treatment of Fix Effectiveness | Uses Individual Values Averages Individual Values

4.1 HDM and ACPM Characteristics

The following discussion addresses statistical models, inclusion of unsurfaced failure
modes, and failure parameter likelihood functions.

4.1.1 Statistical Models

Both projection models assume that the system under test has a number (k) of
independent failure modes that are either manifested (“surfaced”) or unexpressed in a
test. Their statistical models reflect whether the independent test variable is discrete
or continuous.

The HDM assumes that the data are are from a finite series of discrete trials and
that failures from individual failure modes are statistically independent and binomially
distributed. The probability of success (reliability) after corrective actions is the
product of the probability of non-occurrence for all failure modes (equation 2.3).

The ACPM assumes that the data are from a single test whose length is measured
by a continuous independent variable such as time or miles. Failures for each mode
are statistically independent and are individually Poisson distributed with constant
failure rates whose initial values are \;. Total initial failure rate [p(0)] is the sum of
the individual initial failure rates:

pl0) = DX (4.1)

After corrective actions at time (or other continuous test variable) T', with FEF
for each failure mode, that sum becomes:

14
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k

p(T) = 31— )X (12)

i=1

The underlying assumptions of both statistical models are not inconsistent, the
principal difference being the mathematical consequence of discreteness vice continuity
of the independent variable. As is generally known, in the limit of an infinite number
of trials n with binomial probability p — 0 such that p * n is constant = A, the
binomial distribution approximates the Poisson distribution with parameter .

4.1.2 Unsurfaced Failure Modes

Given these assumptions, the statistical models for HDM and ACPM are valid.
However, a problem arises when test data are directly used with the projection models.

For the HDM, in a test, unobserved failure modes have no failures to be used for
estimating their failure probabilities. The most direct estimate for these probabilities
is zero. But if fix effectiveness factors are used, this would lead to a biased estimate
of reliability. An easy way to see this is to consider the limiting case where all fix
effectiveness factors are 1.0 and all unsurfaced modes are estimated to have zero
probability of failure. In that case, equation 2.3 shows that reliability is 100 percent.
Thus, because there are generally unsurfaced failure modes that decrease true reliability
below 100 percent, a policy where surfaced failure modes are completely fixed and
unsurfaced modes are assumed to have zero failure rates will generally overestimate
system reliability. When this occurs, regardless of how many times a test is repeated,
the pattern of estimated reliabilities will not average out to the true reliability. This
is the essence of a biased estimator. Thus, an unbiased estimator needs to account for
the effect of unsurfaced failure modes. Equation 2.4 accounts for unobserved modes by
adjusting the estimate of probability for all modes. The probability of failure of each
mode (left side of 2.4) becomes a weighted average of (1) the observed failure rate for
that mode (first term on the right) and (2) the average of rates for all modes (second
term on the right). The weighting factor, which is in the interval [0,1], is called the
shrinkage factor and is determined using an error-minimizing procedure (equations
2.6-2.11). This causes unsurfaced modes to appear in the reliability estimate because
their adjusted values are non-zero despite exhibiting no failures during a test.

Equation 2.4 also changes the estimated reliability of each surfaced failure mode,
with the first term on the right decreasing the observed probability of failure but the
second term increasing it by adding a fraction of the average failure probability. An
interesting property of the combination of terms in equation 2.4 is that the statistical
expectation of the sum of the adjusted probabilities of failure equals the sum of the
true probabilities of failure. That is, that sum is an unbiased estimator of the sum of
the probabilities of failure, and by equation 2.2, using the adjusted reliabilities gives
an unbiased estimate of system reliability prior to corrective action.

15
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The ACPM* divides failure modes into those that are not intended to be fixed (A
modes) and those that will be fixed after a test, if they surface in the test (B modes).
Thus, a modified expression for the statistical model is:

p(T) =+ 3 (1= ), (4.3)

i=1

where the second term is a sum over all B modes and A + B = k.

A direct way to apply test data to equation 4.3 is to estimate the individual
variables in the equation. Engineering judgment can estimate the y; as numbers d;,
and the failure rates are estimated as 5\Z equal to the number of failures for each B
mode divided by the total test length. If this is done, then the estimated total failure
rate after corrective actions is:

AT) = s+ _(1—d); (4.4)

i=1

While plausible, the above is a biased estimate of p(T"). The expectation of p(T")
is:

B B

E[H(T)] =+ Y (L—d)\i+ > dide™" (4.5)

i=1

The third term on the right side of equation 4.5 is the correction for bias in equation
4.4. Based on a sequence of steps (Crow 1983), the derivation of ACPM estimates
that term as:

B
> didie T = p AT (4.6)
=1

where 4 is the average fix effectiveness factor, and A and [ are parameters of the
failure likelihood power law that are determined by a fit to test data.

Thus, HDM and ACPM have alternative ways of including unobserved failure
modes and therefore addressing statistical bias. It appears neither has clear advantages,
although the ACPM estimate seems to have a stronger case for an unbiased estimate
of post-fix reliability. Note that the HDM correction for unobserved failure modes has
no restriction on the number of trials, and it appears to apply to the quasi-continuous
case of a large number of trials.

4The equations in this section are adapted from Crow (1983).
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4.1.3 Failure Likelihood

To account for unsurfaced failure modes, HDM and ACPM assume a likelihood function
for the probability parameters in their statistical models.

In the HDM, the two parameters of the beta likelihood of failure probabilities
(equation 2.5) are estimated from the first two moments of the test data (equations
2.6-2.9). The example in Section 3.1 provides data to illustrate implications of using
this likelihood function. The example has 27 trials, 7 B-modes, and 11 failures for those
modes. Using the example’s parameters, Figure 4.1 shows the cumulative likelihood,
the likelihood density, a predicted likelihood, and the empirical likelihood distribution
for test data.
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2 i == == Distribution from Test
B 0.40 o 20 £
= |1l 1 sssss Predicted Distribution [T
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Probability of Failure Per Trial

Figure 4.1: Likelihood for Example 1 (Section 3.1)

The horizontal axis in the figure shows values of probability of failure per trial, and
the vertical axis shows the likelihood for a failure mode to have the indicated value.

The upper continuous curve (red) is the beta distribution that describes the
cumulative likelihood of failure probabilities for the example in Section 3.1. Note
that the most likely failure probabilities are small. Roughly 90 percent of the failure
probabilities are less than or equal to 0.037, the smallest value that can be observed
in 27 trials (1 failure/27 trials). The lower continuous curve (light blue) is the beta
failure density. The right-hand vertical scale shows its values. All but a small fraction
of the density is for failure probabilities less than or equal to 0.037.

The dotted line (dark blue) is the result of numerical integration of beta and
binomial distributions. It shows a theoretical prediction of the outcome of the 27 trials
in the example, given the beta distribution in failure probability and the fact that
only 1 or more integer numbers of failures are observable in 27 trials. (It is also a fit
because the parameters of the beta distribution are derived from the data.) The line
is merely a guide for the eye—each vertical step represents a value in a distribution of
discrete values. For example, the first vertical line indicates that about 65 percent of
the observed failure modes should exhibit only 1 failure in 27 trials and have estimated
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probability of failure equal to 0.037. The second step, for failure modes that exhibit
2 failures in 27 trials, adds approximately 20 percent to the cumulative distribution,
and so on.

The dashed line (green) is the distribution of observed probabilities in the example.
It agrees well with the theoretical prediction, indicating that use of the beta distribution
and the method of moments is reasonable.

The ACPM estimates the correction term for unsurfaced modes, the rightmost
sum in equation 4.5, by the power law in equation 4.6. This implicitly performs
the summation in 4.5, thus implicitly assuming a likelihood of the A;. Because the
estimation procedure reduces free parameters to only two (A and /) , there may be
no unique mapping of the power law into a likelihood function. With ACPM there
is therefore no direct way to compare the empirical likelihood of failure probabilities
with the assumed theoretical one. ACPM includes two statistical tests of fit for its
model, however, which is an implicit way of checking the validity of the underlying
likelihood function.

4.1.4 Other Factors

For the HDM, equations 2.6, 2.7, 2.11, 2.12 and 2.13 depend on k, the total number
of failure modes. The model user needs to specify its appropriate values. The default
is a value that is great enough for HDM to approach its asymptote for estimated
reliability.

As currently formulated, HDM cannot be used unless at least one surfaced failure
mode has more than one failure. Otherwise, all surfaced modes have an estimated
probability of 1/T, leading to a negative value for ny, the number of pseudo-trials in
the beta likelihood for failure probability. The beta likelihood is undefined for negative
numbers of pseudo trials.

For the ACPM, the estimation of reliability requires a fit to test data. While
the end result is a reliability estimate for the corrected system at the end of test, a
by-product is an estimate of the power-law parameters that can support a prediction
of the number of surfaced modes as a function of time (or other independent variable).

4.2 Example Model Applications
For the example in Section 3.1, Table 4.3 compares HDM and ACPM estimates of
reliability. The HDM estimate of reliability is from that section. For its estimate,
ACPM is used assuming the 27 trials equate to 27 hours and that the 11 failures are
randomly distributed in that interval. In the table, the values for ACPM include
the median values for 100 random trials, with an 80-percent confidence interval in
parentheses.

The table indicates that for this case, the models produce substantially differing
estimates of MTBF, but comparatively close estimates of single-trial reliability. The
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Table 4.3: Comparison of Projection Model Predictions for
Example 1 in Section 3.1

Projection Model Reliability MTBF
HDM 0.8218 5.095
ACPM | Using /3 0.745 (0.652-0.803) | 3.39 (2.34-4.55)
Using j3 0.769 (0.686-0.821) | 3.82 (2.65-5.06)

reason for this is that reliability cannot exceed 100 percent but MTBF can increase
indefinitely. Thus, small differences in single-trial reliability can equate to large
differences in MTBF. ACPM has alternative estimates of MTBF, depending on
whether the estimate is based on a maximum likelihood parameter B or an unbiased
(. Agreement between models is better using 5. The HDM reliability and MTBF
estimates fall at the upper end of ACPM 80-percent confidence intervals.

Table 4.4 extends the comparison of HDM and ACPM to a range of input values
for B modes (m), total failures (N), and trials (7°). The 21 lines in the table are in 3
groups of 7 cases each. Each group has numbers of trials that vary from 5 to 100 but
a fixed number of failures. Thus, for a constant total test in hours, all cases in a group
should have approximately the same overall ratio of failures to time (i.e., MTBF). The
output that changes within each group of seven is the single-shot reliability—for a
constant number of failures, as the number of trials increase, the failure rate per trial
decreases, and consequently the reliability per trial increases.

For each case, the table lists single-shot reliability from the HDM, an equivalent
HDM MTBEF, and a comparable ACPM MTBF. The HDM MTBF is derived assuming
a fictional discrete system that is reused over its m trials and ends with a probability
of successful completion of all trials. Assuming a 100-hour total test time and an
exponential probability of successful completion, this translates into a hypothetical
MTBF for all trials (i.e., for the entire 100 hours). The table lists ACPM results based
on the unbiased estimate of (.

In the table, most of the cases in each group of seven have almost the same MTBF,
and that value agrees with the ACPM median MTBF to between a few and about 10
percent. Intuitively, the MTBF difference between HDM and ACPM should be least
with the greatest number of trials (100). This is because the greater the number of
trials, the more closely the binomial distribution assumed for the HDM approximates
the Poisson distribution assumed for the ACPM. However, for the trial data in Table
4.4, this trend in results does not always occur. One relevant factor appears to be
the sensitivity of ACPM MTBF estimates to the distribution of failure mode first
occurence times. Because the HDM model does not require such times, it is not clear
which are the appropriate first occurence times for comparison. Also, other choices for
trial data might have been more suited to the power law in equation 4.6. Nonetheless,
within the scope of this analysis, the HDM and ACPM results do not disagree. In each
of the three cases in Table 4.4, the HDM MTBF values are well within the 80-percent
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Table 4.4: Comparison of HDM and ACPM Results For Ranges of
Input Parameters

HDM Quantities

HDM Reliability

HDM MTBF

ACPM MTBF

Single Shot MTBF for 100 Hour
B-modes | Failures | Trials Reliability After Continuous Test Using 3
Corrective Action (Hypothetical) (Median/80% Sample Interval)
3 5 5 0.540 32.5 33.2
10 0.720 30.5 (22.3-43.7)
15 0.801 30.0
25 0.874 29.6
50 0.936 30.2
75 0.957 30.1
100 0.967 30.1
6 10 5 0.292 16.2 16.3
10 0.519 15.2 (10.9-20.6)
15 0.641 15.0
25 0.763 14.8
50 0.872 14.7
75 0.925 14.6
100 0.934 14.6
9 15 5 0.157 10.8 9.68
10 0.374 10.2 (6.87-11.5)
15 0.513 10.0
25 0.667 9.9
50 0.815 9.8
75 0.872 9.7
100 0.902 9.7

confidence intervals for the ACPM MTBF sample.

4.3 Observations

Despite quite different initial assumptions, reliability projections from HDM and
ACPM are similar. It appears the choice between these models would depend on how
well basic assumptions apply. HDM is strongest in its use of fix effectiveness factors
and would seem to be best for small numbers of trials, especially if there are few
surfaced failure modes. In such cases results could be sensitive to how the factors
are distributed among the modes. ACPM seems best when there is sufficient testing
to uncover many failure modes, thus making an average fix effectiveness factor more
representative of a central tendency and also providing enough time-of-occurrence
data to facilitate a reasonably precise estimate of failure rate vs. test time.
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